REGISTRATION FORM

AICTE sponsored QIP Short Term Course on Introduction to Numerical Heat Transfer, Fluid Flow and its Applications

28th May to 3rd June 2018

Name:
Date of Birth:
Gender: Male ☐ Female ☐ Other ☐
Qualification:
Designation:
Organization:
Mobile:
Email id:
Accommodation Requirement: Yes ☐ No ☐

If selected, I agree to abide by rules of AICTE-QIP and attend the program for its entire duration.

Signature: ____________________________
Head of the Institution (Signature with Office Seal)

To be filled & submitted AFTER intimation of selection
DD No. & Date:
Bank:
Branch:

ORGANIZING COMMITTEE

Chief Patron
Dr S R K Prasad, Correspondent, CIT

Patrons
Mr. S. Rajiv Rangasami, Director, CIT
Dr R Prabhakar, Secretary, CIT

Chairman
Dr V Selladurai, Principal, CIT

Coordinating team
Dr A S Krishnan
Dr S Balamurugan
Mr D P Sam Solomon

ADDRESS FOR CORRESPONDENCE

Dr S Balamurugan / Dr A S Krishnan
Department of Mechanical Engineering
Coimbatore Institute of Technology, Coimbatore— 641014
Email: inhtffa2018@rediffmail.com;
Phone: 9488571718 / 9442900190

DUE DATES

Receipt of Application by E-mail: 25th April 2018
Intimation of Selection: 30th April 2018
Receipt of DD & Registration form (Hardcopy) from selected candidates: 14th May 2018

BOARDING AND LODGING

Boarding and Lodging facilities will be provided only for outstation candidates on twin sharing basis. No family accommodation will be provided.

Coimbatore Institute of Technology
(Government Aided Autonomous Institution)
Coimbatore - 641014, India

Announces
AICTE Sponsored QIP Short Term Course on Introduction to Numerical Heat Transfer, Fluid Flow and its Applications

28th May to 3rd June 2018

COORDINATORS
Dr A S Krishnan
Dr S Balamurugan

CO-COORDINATOR
Mr D P Sam Solomon

Organized by
Department of Mechanical Engineering
Coimbatore Institute of Technology (CIT)
Coimbatore - 641014, India
Coimbatore Institute of Technology (CIT), started in 1956 by Sri. V. Rangasamy Naidu is reckoned for its academic and research excellence in engineering and technology. CIT is a Government Aided Autonomous Institution affiliated to Anna University, Chennai. The institute has a reputation with service of competent well qualified faculty members and dynamic management to set highest standards in engineering research and development. CIT offers undergraduate, post graduate and PhD programs with curriculum of global standards, promoting the students to compete internationally. All the courses are accredited by NBA. The institute has celebrated its Golden Jubilee in the year 2006 and has collaborations with leading frontier universities and industries in India and abroad for promotion of innovative engineering ideas. CIT has a laurel foliage on the head as an emblem of victory. Recently, CIT was awarded with the “Beyond Success Bizz Award - 2015” the world business leader award and “ABP News National B-School awards” 2014 for outstanding Engineering Institution in South India.

INTRODUCTION

Heat Transfer and Fluid flow find their presence in a plethora of systems involving energy transfer, ranging from everyday domestic activities like heating of water, refrigerators to complex industrial and commercial applications like aerospace propulsion, energy interaction between celestial objects, etc. Some of these are simple with several properties essentially remaining constant or at least justifiable to be assumed so, while some are on the other pole. Prohibitive experimental costs and scarcity of exact solution using classical analytical techniques have necessitated the dependence on numerical techniques for heat transfer and fluid flow, also referred to as Computational Fluid Dynamics. The rapid growth of computational hardware in the second half of the previous century has greatly contributed to the applicability of numerical techniques to a wide range of complex problems. Hence, it has become more than academic interest for engineers and scientists working across disciplines to have a knowledge of computational/numerical techniques in heat transfer and fluid flow.

COURSE CONTENTS

- Reynolds Transport Theorem and Governing Equations of Heat Transfer & Fluid Flow
- Formation of Difference equations
- Numerical Methods for Solving Algebraic Equations
- Discretization of Geometry, and Mesh Generation
- Grid Independence Study and Numerical Errors
- Steady and unsteady conduction
- Isothermal Fluid flow
- Forced and Natural Convection

The infrastructure and people together have been instrumental in producing more than 3000 quality engineers for the past 61 years through quality education.